相关信息
本次会议旨在推动变分学的发展,促进其在偏微分方程,动力系统及几何分析等领域应用研究的交流与合作。
会议组织委员成员(字母顺序):
丁彦恒 | 中科院数学研究所 |
冯伟杰 | 北京航空航天大学 |
蒋美跃 | 北京大学 |
阮元龙 | 北京航空航天大学 |
感谢各位专家参加此次会议并对我们的工作予以支持!
北航与会抒怀
(2021-12-25)
丁彦恒
~~~~~~~
航天一曲神舟舞 ,
脚踏飞云谁敢阻 。
吾辈自强雄霸功 ,
九州冠勇豪情抒 。
12月25日议程
(报告为随机排序)
08:35-09:00 Dec. 25
开幕式
致欢迎辞
韩德仁
北京航天航空大学,数学科学学院院长
嘉宾讲话
江松
中国科学院院士,北京应用物理与计算数学所研究员
09:00-09:40 Dec. 25
Transition between nonlinear and linear eigenvalue problems
刘兆理
首都师范大学
We study convergence of variational solutions of the nonlinear eigenvalue problem $$ -\Delta u=\lambda|u|^{p-2}u, u\in H_0^1(\Omega), $$ as $p\downarrow2$ or as $p\uparrow2$, where $\Omega$ is a bounded domain in $\mathbb R^N$ with smooth boundary. It turns out that if $\lambda$ is not an eigenvalue of $-\Delta$ then the solutions either blow up or vanish according to $p\downarrow2$ or $p\uparrow2$, while if $\lambda$ is an eigenvalue of $-\Delta$ then the solutions converge to the associated eigenspace.
主持人:周焕松(武汉理工大学)
09:45-10:25 Dec. 25
Non-degeneracy of Multi-bubbling Solutions for fractional prescribed curvature problem
郭玉霞
清华大学
We consider the following fractional prescribed scalar curvature problem $$ \left\{\begin{array}{ll} (-\Delta)^s u =K(y)u^{2^*_s-1}, \ \hbox{ in } \ \mathbb{R}^N, \\ u>0, \quad u \in \dot{H}^s(\mathbb{R}^N), \end{array}\right. $$ where $N > 2s+2$, $\frac{1}{2} < s <1$, $2^*_s=\frac{2N}{N-2s}$ is the critical Sobolev exponent, $\dot{H}^s(\mathbb{R}^N)$ is the completion of $C_0^{\infty}(\mathbb{R}^N)$ under the semi-norm $[u]_{H^s(\mathbb{R}^N)} :=(\int_{\mathbb{R}^N}|(-\Delta)^{\frac{s}{2}}u|^2dx)^{\frac{1}{2}}$, and $K(y)$ is a positive radial function. We first prove a non-degeneracy result for the positive bubbling solutions of the equation via the local Pohozaev identities. Then we apply the non-degeneracy result to construct new bubbling solutions by Lyapunv-Schmidt reduction arguments. It should be mentioned that due to the non-localness of the fractional operator, we can not establish the local Pohozaev identities for the solution of $u$ directly. Instead, we consider its corresponding harmonic extension, and this difference not only makes the sharp estimates for several integrals in the local Pohozaev identities but also force us to use the Pohozaev identities in quite a different way.
主持人:周焕松(武汉理工大学)
10:25-10:35 Dec. 25
茶歇
10:35-11:15 Dec. 25
Bifurcation of nodal solutions of the mean curvature space-like equation in certain Friedmann-Lemaitre-Robertson-Walker space times
马如云
西安电子科技大学
We study the global bifurcation of nodal solutions of the mean curvature spacelike equation in certain Friedmann-Lemaitre-Robertson-Walker space times: $ \left( \frac{\nabla u}{f\left( u\right) \sqrt{f\left(u\right) ^{2}-\left\vert \nabla u\right\vert ^{2}}}\right)$ $ +\frac{f^{\prime}\left( u\right) }{\sqrt{f\left( u\right)^{2}-\left\vert \nabla u\right\vert ^{2}}}\left( n+\frac{\left\vert \nabla u\right\vert ^{2} }{f\left( u\right) ^{2}}\right) $ $ =nH\left( u,\left\vert x\right\vert \right) \text{ in }B\left( R\right) $, $ \left\vert \nabla u\right\vert <f\left( u\right) \text{ in }B\left( R\right) $ and $ \frac{\partial u}{\partial\nu} =0 \text{ on }\partial B\left( R\right). $
主持人:邹文明(清华大学)
11:20-12:00 Dec. 25
Small Solitons and Multi-Solitons in Nonlinear Schrödinger Equations
张健
电子科技大学
By solving two types of constrained variational problems and spectrum analysis, we find an approach to ascertain frequency from the prescribed mass for nonlinear Schrödinger equations. Then we prove existence and orbital stability of small solitons depending on frequencies for nonlinear Schrödinger equation with competitive power nonlinearity. In addition, we construct multi-solitons of the equation with different speeds by stable solitons.
主持人:邹文明(清华大学)
12:00-14:00 Dec. 25
午餐
14:00-14:40 Dec. 25
Heisenberg群上的分析或非线性退化椭圆方程及其应用
麻希南
中国科技大学
主持人:陈建清(福建师范大学)
14:45-15:25 Dec. 25
不可压缩欧拉方程的行波涡解
曹道民
中科院数学研究所
报告人将报告近年来在不可压欧拉方程定常涡解方面的研究,特别地要介绍在二维时行波涡解(traveling vortex),包括涡对解和涡线解(vortex sheet)的存在性。报告人主要介绍的结果是来源于和赖善发、秦国林、詹伟城、邹昌君合作的论文。
主持人:陈建清(福建师范大学)
15:25-15:35 Dec. 25
茶歇
15:35-16:15 Dec. 25
Maslov-type index theory and periodic orbits
段华贵
南开大学
In this talk, I will introduce two kinds of periodic orbit problems, including closed geodesics on compact manifolds and closed characteristics on hypersurfaces in $R^{2n}$. And I will also focus on explaining how the Maslov-type index theory has been applied to do with these corresponding problems.
主持人:郭玉霞(清华大学)
16:20-17:00 Dec. 25
非线性量子力学系统研究新结果
丁彦恒
中科院数学研究所
报告利用变分方法研究非线性(相对论)量子力学系统的一些新进展:★ 非线性Dirac方程和非线性Klein-Gordon方程的耦合, ★ 非线性Dirac方程和非线性Maxwell方程的耦合, 包括解的存在性、指数衰减性与集中现象;Dirac方程的非相对论极限、凹凸非线性问题的多解性等;以及一个非存在性结果 (合作者:郭琪、董晓婧、余渊洋、B. Ruf)。
曹道民(中科院数学研究所)
18:00-00:00 Dec. 25
晚宴
12月26日议程
(报告为随机排序)
08:30-09:10 Dec. 26
邹文明
清华大学
主持人:邓引斌(华中师范大学)
09:15-09:55 Dec. 26
From KP-I lump solution to traveling waves of Gross-Pitaevskii Equation
刘勇
中国科技大学
We are interested in the existence of traveling wave solutions of the GP equation. In this talk, we will use the lump solution of the KP-I equation to construct a family of traveling wave solutions of the GP equation with transonic speed. Compared with the variational method, our construction has the advantage that the precise asymptotic behavior of the solutions can be described.
主持人:刘轼波(厦门大学)
10:00-10:40 Dec. 26
Local linking and its applications to indefinite Schrodinger type
刘轼波
厦门大学
In the last two decades, nonlinear Schrodinger type equations, such as Schrodinger-Poisson systems, Schrodinger-Kirchhoff equations and quasilinear Schrodinger equations, have captured great interests in the field on nonlinear analysis. Most of the results require that the Schrodinger operator is positive definite, so that the zero function is a local minimizer of the variational functional and the mountain pass theorem applies. We are interested in the case that the Schrodinger operator is indefinite. It turns out that unlike semilinear Schrodinger equations, the classical minimax theorems such as the linking theorem, are also not applicable. We found that the concept of local linking introduced by Shujie Li and Jiaquan Liu in the 1980's, is suitable for this kind of problems. In this talk I will present our recent results for such problems, obtained by applying local linking theory and Morse theory.
主持人:蒋美跃(北京大学)
10:45-11:25 Dec. 26
On the scalar curvature problem with very degenerate prescribed functions
彭双阶
华中师范大学
We will talk about a scalar curvature problem. It is known that there are a number of results related to the existence of solutions concentrating at the isolated critical points of the scalar curvature $K(x)$. However, if $K(x)$ has non-isolated critical points with different degenerate rate along different directions, whether there exist solutions concentrating at these points is still an open problem. We give a certain positive answer to this problem via applying a blow-up argument based on local Pohozaev identities and modified finite dimensional reduction method when the dimension of critical point set of $K(x)$ ranges from $1$ to $N-1$.
主持人:张健(电子科技大学)
北航变分与偏微分方程会议闭幕辞
(2021-12-26)
丁彦恒
~~~~~~~
线上周公会,
西南东北围。
抱拳联友谊,
再听雅声飞。